
Abstract

3-Aryl- l-menthopyrazoles $\mathbf{1}$ and $\mathbf{2}$ and related compounds were prepared from l-menthone, and their enantioselective activities were discussed as chiral ligands. In this series of compounds, 2,6-bis(2-methyl-l-men-thopyrazol-3-yl)pyridine (8a), which had both structural features of 3-phenyl-l-menthopyrazole (1b) and C_{2} symmetric ligand in the molecule, should form the C_{2} symmetric complex in situ with $\mathrm{Zn}(\mathrm{OTf})_{2}$ or $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The subsequent complex catalyzed the Diels Alder reaction of 1-acryloyl-3,5dimethylpyrazole (11a) with cyclopentadiene (12) enantioselectively up to 75% ee.

J. Heterocyclic Chem., 40, 773(2003).

Introduction
Recently we designed and prepared 3-phenyl-l-menthopyrazole (1b) and related compounds as chiral pyrazoles [1]. Moreover, we have investigated the excellent properties of these chiral pyrazoles as a new chiral auxiliary [2,3], which has unique structure and properties different from the conventional chiral auxiliaries [4]. The most important characteristics of this auxiliary are that the acyl substrate terminates to nitrogen atom of heteroaryl pyrazole ring, and that the chiral atmosphere surrounds the substrate. That is, the ($4 R$)-methyl group of $\mathbf{1 b}$ is located close to the 3-phenyl group and steric hindrance is relaxed by twisting of the benzene ring, which overlaps one side of the terminal nitrogen atom. These structural features cause the transmission of the chirality of the $(4 R)$-methyl group into the terminal nitrogen atom through torsional asymmetry of phenyl group, and cause the diastereofacial effect in the reactions of the substrate moiety with alkyl halides [5], phenyldisulfide [6], acyl chloride [7], aldehydes [8], and compounds containing $\mathrm{C}=\mathrm{N}$ bond [9]. The asymmetric addition of Grignard reagents [10], dienes [11] and 1,3dipolar compounds [12] on N-(α, β-unsaturated)-acyl substituted pyrazoles have been reported as well. Otherwise, N -acylheteroaromatics such as N -acylimidazoles are utilized as the activated acyl moiety in a wide variety of organic syntheses [13]. As an analogue of these N-acylheteroaromatics, N-acylpyrazoles are easily converted into acyl derivatives by the action of nucleophiles such as alcohols [14], amines [15], Grignard reagents [16], and organozinc compounds [17] under basic or acidic conditions [18].
Since Evans reported the enantioselective Diels Alder reactions using the C_{2} symmetric chiral catalyst such as 2,2-bis[2-(4-(S)-phenyl-1,3-oxazolyl)]propane [(S,S)-Phbox] [19], many papers concerning the analogous box derivatives have appeared in the literature [20]. Particularly the tridentate ligands in the box-series exhibited high stereoselective catalytic effects in various organic syntheses.

Pyrazoles are good ligands for various Lewis acids [21], and the optically active pyrazoles are expected to show effective chiral catalytic activities for various enantioselective syntheses. These optically active pyrazoles have already exhibited chiral catalytic activity in the borane reduction and the dialkylzinc addition on the prochiral carbonyl compounds [22]. Furthermore, bis(pyrazolyl)methanes, which were regarded as bidentate pyrazole ligand with C_{2} symmetry, showed chiral catalytic activity for Diels Alder reaction by the formation of magnesium complex [23]. However, we have strongly desired to develop more effective catalyst of optically active pyrazole derivatives for a wide variety of synthetic reactions. Therefore, we designed the optically active 2,6-bis(l-menthopyrazol-3-yl)pyridine (2a), which had both structural features of 3-aryl-l-menthopyrazole (1) and tridentate ligand with C_{2} symmetry in the molecule. Here we will report the preparation of $\mathbf{2 a}$ and the related pyrazoles. Also, their chiral catalytic activities in the Diels Alder reaction will be discussed as the extension of the stereoselective Diels Alder reaction using menthopyrazoles $[10,23]$.

Results and Discussion.
Since the coordination abilities depend on the properties of heteroaromatics, we undertook the preparation of 3-het-eroaryl- l-menthopyrazoles (1a) as a structural analogue of 1b summarized in Scheme 1. By the reaction of heteroaroyl chlorides (3) on l-menthone in the presence of lithium diisopropylamide, the corresponding 2-hetaroyl-lmenthones (4) were prepared. The subsequent diketones 4 were treated with hydrazine hydrate under the acidic conditions, 3-heteroaryl- l-menthopyrazoles (1) were prepared in good yields (Table 1). Similarly 3-heteroaryl-2-methyl-l-menthopyrazoles (5) were obtained by the treatment of $\mathbf{4}$ with methylhydrazine together with small portions of regioisomeric 3-hetrayl-1-methyl-l-menthopyrazoles (6). Otherwise, $\mathbf{6}$ can be synthesized by methylation of $\mathbf{1}$ with methyl iodide.

1,3 - $\mathrm{Bis}\left(l\right.$-menthopyrazol-3-yl)benzene (2b) as a C_{2} symmetric bidentate ligand was prepared from isoph-

Table 1
Preparation of 3-Heteroaryl- l-menthopyrazoles and their N-Methyl Derivatives from 4

Run	Aroyl- l-menthone[a]		Hydrazine	Product (Yield, \%)
1	$\mathbf{4 a}$	Py	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	$\mathbf{1 a}(27)$
2	$\mathbf{4 a}$	Py	MeNHNH_{2}	$\mathbf{5 a}(65)+\mathbf{6 a}(17)$
3	$\mathbf{4 b}$	Ph	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	$\mathbf{1 b}(96)$
4	$\mathbf{4 b}$	Ph	MeNHNH_{2}	$\mathbf{5 b}(83)+\mathbf{6 b}(12)$
5	$\mathbf{4 c}$	Fura	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	$\mathbf{1 c}(100)$
6	$\mathbf{4 c}$	Fura	MeNHNH_{2}	$\mathbf{5 c}(78)+\mathbf{6 c}(10)$
7	$\mathbf{4 d}$	Thio	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	$\mathbf{1 d}(80)$
8	$\mathbf{4 d}$	Thio	MeNHNH_{2}	$\mathbf{5 d}(82)+\mathbf{6 d}$ (trace)
9	$\mathbf{4 e}$	Pyra	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	$\mathbf{1 e}(51)$
10	$\mathbf{4 e}$	Pyra	MeNHNH_{2}	$\mathbf{5 e}(36)+\mathbf{6 e}(16)$

[a] 2-Pyridinyl, 2-furyl, 2-thienyl and 5-methyl-1-phenylpyrazol-3-yl groups were abbreviated as Py, Fura, Thio, and Pyra, respectively.
thaloyl chloride and l-menthone. By the action of lithium diisopropylamide, the corresponding tetraketone intermediate $\mathbf{7 b}$ was afforded in moderate yield, then $\mathbf{7 b}$ was treated with hydrazine hydrate to give $\mathbf{2 b}$. The treatment of 7b with methylhydrazine afforded predominantly 1,3-bis(2-methyl-l-menthopyrazol-3-yl)benzene ($\mathbf{8 b}$).

Alternatively, a regioisomer of $\mathbf{8 b}$, 1,3-bis(1-methyl-l-menthopyrazol-3-yl)benzene (9b) was regioselectively prepared by direct methylation of $\mathbf{2 b}$ using methyl iodide and butyllithium. Although 1,4-bis(l-menthopyrazol-3yl)benzene (2c) was obtained in good yield by similar reaction conditions, 1,2-analogue could not be prepared due to their steric hindrance and phthalic diester (10) of menthone enolate was afforded.

Analogously, C_{2} symmetric tridentate ligands were prepared from pyridine-2,6-dicarbonyl chloride and l-menthone through the corresponding tetraketone intermediate (7a). Finally, 7a was treated with hydrazine hydrate to give 2,6-bis(l-menthopyrazol-3-yl)pyridine (2a). Two regioisomeric derivatives 1,3-bis(2-methyl-l-menthopyra-zol-3-yl)pyridine (8a) and 1,3-bis(1-methyl-l-menthopyra-zol-3-yl)pyridine (9a) were prepared by treatment of 7a with methylhydrazine and by the direct methylation of 2a, respectively.
In order to reveal the capability of ligands as chiral catalysts, the asymmetric Diels Alder reaction of 1-acryloyl-3,5-dimethylpyrazoles (11a) with cyclopentadiene (12) was performed by using 3-heteroaryl-l-menthopyrazoles $(\mathbf{1}, \mathbf{5}$ and $\mathbf{6})$ in the presence of $\mathrm{Zn}(\mathrm{OTf})_{2}$ as a catalyst. The

Scheme 2

main product was found to be 1-(endo-bicyclo[2.2.1]hept-5-ene-2-carbonyl)-3,5-dimethylpyrazole (13a) accompanied with small portions of exo-isomer 14a. The enantiomeric mixture of 13a was converted into methyl endo-bicyclo[2.2.1]hept-5-ene-2-carboxylate (15) by treatment with sodium methoxide in methanol, and the stereostructure and ratio of the predominant enantiomer was deduced by chiral gas chromatography.

Compared with the cases of 3-phenyl-l-menthopyrazoles $(\mathbf{1 b}, \mathbf{5 b}$ and $\mathbf{6 b})$, similar enantioselectivities in the Diels Alder reactions were observed by the catalyst of l-menthopyrazoles having various heteroaryl groups other than pyridine as shown in Table 2. Methyl group on either $N-1$ or $N-2$ atom in compounds $\mathbf{5}$ and $\mathbf{6}$ did not affect the enantioselectivity in these reactions. In the cases of pyridine substituted analogues (1a), some enantioselective promotion under the neutral conditions were observed, while the deprotonation from 1a by the addition of butyllithium set back to the similar activity to that of $\mathbf{1 b}$.

Table 2
Catalytic Effect of 3-Heteroaryl-l-menthopyrazoles for Diels Alder Reaction

Run		Ligand Ar[b]	R	Lewis Acid[a]	Additive	Yield	Endo	\%
1	1b	Ph	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$		79	92	24
2	1b	Ph	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	BuLi	76	94	25
3	5b	Ph	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		89	93	40
4	6b	Ph	1-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		84	92	28
5	1a	Py	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$		92	93	32
6	1a	Py	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	BuLi	79	95	25
7	5a	Py	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		90	94	26
8	6a	Py	1-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		91	92	23
9	1c	Fura	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$		63	93	23
10	1c	Fura	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	BuLi	72	91	21
11	5c	Fura	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		77	91	21
12	6 c	Fura	1-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		82	93	30
13	1d	Thio	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$		72	93	21
14	1d	Thio	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	BuLi	80	94	20
15	5d	Thio	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		98	93	27
16	6d	Thio	1-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		76	93	25
17	1e	Pyra	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$		79	86	24
18	1e	Pyra	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	BuLi	79	95	18
19	5e	Pyra	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		98	89	23
20	6 e	Pyra	1-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$		73	92	26

[a] The molar ratio between ligand and $\mathrm{Zn}(\mathrm{OTf})_{2}$ was $1: 1$; [b]2-Pyridinyl, 2-furyl, 2-thienyl and 5-methyl-1-phenylpyrazol-3-yl groups were abbreviated as Py, Fura, Thio, and Pyra, respectively.

Since the complex formation of the heteroatoms was generally proportional to their basicity, the coordination abilities of heteroaryl group should be the order of pyrazolato anion > pyridine > pyrazole > thiophen or furan. By addition of strong base such as butyllithium, N-unsubstituted pyrazoles should be deprotonated to form the corresponding pyrazolato anion, and should perform as good ligands toward Lewis acid. Therefore, zinc atom should

mainly coordinate with the nitrogen atom of pyridine ring in 1a, 5a and 6a, while the other ligands should be coordinated on the nitrogen atom of menthopyrazole ring. Thus the enantioselectivity by these ligands was mainly dependent on the coordination site of the zinc atom.

Although 1,3-bis(l-menthopyrazol-3-yl)benzenes (2b, $\mathbf{8 b}$, and $\mathbf{9 b}$) seemed to be a bidentate ligand having C_{2} symmetry, distinguishable enantioselectivity did not appear in the Diels Alder reaction using $\mathrm{Zn}(\mathrm{OTf})_{2}$, as listed in Table 3. If nitrogen atom of one pyrazole on $\mathbf{2 b}$ or $\mathbf{9 b}$ approached to the other side of pyrazole nitrogen in the appropriate distance as a bidentate ligand, 2- H hydrogen atom on benzene ring should move to the hindered position for the complex formation. When these ligands were treated with equimolar amount of $\mathrm{Zn}(\mathrm{OTf})_{2}$, one of two pyrazole moieties should chelate independently to the zinc atom to form a partially coordinated complex. These assumptions reasonably explained that these compounds exhibited similar enantioselectivities in the asymmetric Diels Alder reaction. Even though these ligands were

Table 3
Catalytic Effect of Bis(l-menthopyrazol-3-yl)arenes for Diels Alder Reaction

| Run | Ligand
 Ar[a] | | | Lewis
 Acid | Mole
 Ratio | Additive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Yield Endo \% ee \%

[^0]treated with 2 molar amounts of $\mathrm{Zn}(\mathrm{OTf})_{2}$ for the complete complex formation with all pyrazole moieties, any remarkable change was not observed in these Diels Alder reaction.
2,6-Bis(l-menthopyrazol-3-yl)pyridines ($\mathbf{2 a}, \mathbf{8 a}$ and $9 \mathbf{9}$) had a 2,6 -disubstituted pyridine ring, which strongly preferred the complex formation rather than pyrazole moiety. Moreover, the absence of 1-H hydrogen atom on pyridine ring should avoid the steric inhibition of the complex formation differently from the cases of 1,3-bis(l-menthopyra-zol-3-yl)benzenes. Particularly the structures of 2a and 9a were expected to be suitable for tridentate complex formation with the effective chiral surrounding.

The X-ray structural analysis gave the molecular structure of $\mathbf{1 c}$, in which the furan and pyrazole rings were bonded in syn-form and the heteroatoms of both rings were located in sufficiently near position for the bidentate chelation, as shown in Figure 1. On the contrary in structure 1a and 9a, pyridine ring and pyrazole rings were bonded in twisted anti-form, as shown in the ORTEP drawing in Figure 2 and Figure 3, respectively. Namely in crystal state, the Lewis basic nitrogen atoms of pyridine and pyrazoles were unfavorably located at far position, in spite of the expectation of the good tridentate ligand. In order to take a role of the bidentate or tridentate ligand, the bond rotation from the most stable conformer was required along the restricted bond between pyridine and pyrazole ring.

Figure 1. ORTEP of 3-(2-Furyl)-l-menthopyrazole (1c).

Figure 2. ORTEP of 3-(Pyridin-2'-yl)-l-menthopyrazole (1a).

When the Diels Alder reaction of 11a was carried out in the presence of $9 \mathbf{a}$ and $\mathrm{Zn}(\mathrm{OTf})_{2}$, the enantioselectivity was found to be less than that of $\mathbf{9 b}$. Also the reaction proceeded with similar selectivity by the use of 2a and

Figure 3. ORTEP of 2,6-Bis(1-methyl-l-menthopyrazol-3-yl)pyridine (9a).
$\mathrm{Zn}(\mathrm{OTf})_{2}$, and the enantioselectivity increased up to 43% ee under the forced conditions for tridentate complex formation by the deprotonation from the pyrazole ring of $\mathbf{2 a}$ using butyllithium.

By the use of 8a as a chiral ligand, the asymmetric Diels Alder reaction was observed with the good enantioselectivity up to 67% ee, and the enantioselectivity fell down into 43% ee when 8 a was used together with 2 molar equivalents of $\mathrm{Zn}(\mathrm{OTf})_{2}$. These results can reasonably be explained by the following speculations. The central pyridine ring of $8 \mathbf{a}$ should be surrounded by 4 methyl groups on 2-, 2'-, 4- and 4'-position, and the steric hindrance was relaxed by the twisted anti-form as an analogy of $\mathbf{9 a}$. Accordingly it was speculated that the basic nitrogen atoms of pyridine and pyrazoles are located far away from each other with their lone pairs of electrons directed in opposite directions. Thus the complex with $\mathrm{Zn}(\mathrm{OTf})_{2}$ should be formed on the pyridine nitrogen keeping their C_{2} symmetry. By the use of 2 molar amounts of Lewis acid, one Lewis acid should coordinate to pyridine and the other on the pyrazole nitrogen, and the subsequent complex should loose its C_{2} symmetry.

For giving full play to the catalytic ability of these ligands, the reaction of various 3,5-disubstituted 1-acryloylpyrazoles (11b, 11c, and 11d) were carried out as listed in Table 4, and 11a was the most preferable substrate for the asymmetric catalytic Diels Alder reaction.

Generally the catalytic activity of the complex molecule was affected by the stability, which depends on either the structure of ligand or the property of the Lewis acid. After attempting complex formation of these ligands with various Lewis acids, $\mathrm{Zn}(\mathrm{OTf})_{2}$ was regarded as the most preferable activator for these Diels Alder reactions as listed in Table 5. Although the complex with $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ did not show

Table 4
The Substituent Effect of Pyrazole in Diels Alder Reaction Catalyzed by $\mathbf{8 b}$ and $\mathrm{Zn}(\mathrm{OTf})_{2}$

Run	Substrate		Yield	Endo \%	ee \%
		R^{1}			
1	11a	Me	84	92	67
2	11b	H	60	95	48
3	11c	t-Bu	44	91	33
4	11d	Ph	62	85	23

Table 5
Catalytic Effect of Bis(l-menthopyrazol-3-yl)pyridine and Various Lewis Acid on Diels Alder Reaction

Run		$\begin{aligned} & \text { Ligand } \\ & \text { Ar[a] } \end{aligned}$	R	Lewis Acid	Mole Ratio	Additive	Yield	Endo \%	$\begin{aligned} & \text { ee } \\ & \% \end{aligned}$
1	2 a	Py	H	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1:1		63	89	6
2	2 a	Py	H	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		69	95	19
3	2a	Py	H	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		59	94	17
4	2 a	Py	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	1:1		95	92	27
5	2 a	Py	H	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1:1	BuLi	51	94	22
6	2 a	Py	H	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1	BuLi	86	95	40
7	2 a	Py	H	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1	BuLi	69	94	38
8	2 a	Py	H	$\mathrm{Zn}(\mathrm{OTf})_{2}$	1:1	BuLi	98	95	43
9	8a	Py	2-Me	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1:1		53	98	45
10	8a	Py	2-Me	$\mathrm{La}(\mathrm{OTf})_{3}$	1:1		84	83	27
11	8a	Py	2-Me	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		58	92	13
12	8a	Py	2-Me	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		76	86	11
13	8 a	Py	2-Me	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1	BuLi	82	94	75
14	8 a	Py	2-Me	RuCl_{3}	1:1		68	93	21
15	8 a	Py	2-Me	$\mathrm{Zn}(\mathrm{OTf})_{2}$	1:1		84	92	67
16	8a	Py	2-Me	$\mathrm{Zn}(\mathrm{SCN})_{2}$	1:1		79	91	28
17	9 a	Py	1-Me	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1:1		43	92	12
18	9 a	Py	1-Me	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		74	95	12
19	9 a	Py	1-Me	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	1:1		89	94	8
20	9 a	Py	$1-\mathrm{Me}$	$\mathrm{Zn}(\mathrm{OTf})_{2}$	1:1		85	92	21

[a] 2,6-Disubstituted pyridine was abbreviated as Py.
any remarkable enantioselectivity, the Diels Alder reaction of $\mathbf{1 1}$ with $\mathbf{1 2}$ succeeded with an enantioselectivity of 75% ee using the complex catalyst which was formed in situ from $8 \mathbf{a}$ and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ in the presence of equimolar amount of butyllithium.

Conclusion.

3-Heteroaryl- l-menthopyrazoles $\mathbf{1}$ and 2 and related compounds were prepared from l-menthone, and their enantioselective activities were discussed as chiral ligands. In this series of compounds, 2,6-bis(2-methyl-l-menthopy-razol-3-yl)pyridine (8a), which had both structural features of 3-phenyl-l-menthopyrazole ($\mathbf{1 b}$) and C_{2} symmetric ligand in the molecule, should form the C_{2} symmetric complex in situ with $\mathrm{Zn}(\mathrm{OTf})_{2}$ or $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The catalytic amount of subsequent complex promoted the Diels Alder reaction of 1-acryloyl-3,5-dimethylpyrazole (11a) with cyclopentadiene (12) enantioselectively up to 75% ee. From these facts, the utilities of chiral pyrazoles for asymmetric synthesis increased by the use as a catalyst rather than an auxiliary.

EXPERIMENTAL

Melting points are uncorrected. ${ }^{1} \mathrm{H} \mathrm{nmr}$ and ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spectra}$ were obtained on JEOL JNM-EX270 (270 MHz) spectrometer in deuterochloroform with tetramethylsilane as an internal standard. The ir spectra were measured by Shimadzu IR-460 spectrometer. The enantiomer ratios were given from the peak ratios of gas
chromatography on SHIMADZU GC-14A gas chromatograph using Chrompack Chirasil DEX-CB capillary column $(0.25 \mathrm{~mm}$ x 25 m). The yields of the Diels Alder adducts were evaluated by GL Science GC-353 gas chromatograph using dimethylsiloxane type capillary column ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$) of GL Science TC-1. The X-ray structural analyses of the crystals were performed by the Rigaku R-AXIS RAPID-F X-Ray diffraction camera controlled with Rigaku R-AXIS RAPID AUTO program, and their data were analyzed by Rigaku Crystal Structure MFC Application (Ver. 1.0.0.1).

Materials.
3,5-Disubstituted 1-acryloylpyrazoles (11) were prepared from the corresponding pyrazoles and acryloyl chloride in the presence of triethylamine according to the method of the previous paper [9,13a], purified by silica gel column chromatography and distillation, and was stored in the refrigerator. During this protocol, the addition of hydroquinone was required to inhibit polymerization which could be effective during the concentration and the distillation procedure. Tetrahydrofuran was dried over sodium benzophenone ketyl radical and distilled just before use. Diisopropylamine and dichloromethane were distilled over calcium hydride under argon atmosphere. Anhydrous methanol was obtained by the distillation from the suspension of magnesium methoxide in methanol. Cyclopentadiene (12) was prepared by the pyrolysis of dicyclopentadiene at 160°, distilled and stored in the freezer. Molecular Sieves $4 \AA$ were freshly dried at 250° under reduced pressure for 3 h .

Ethyl 5-Methyl-1-phenylpyrazole-3-carboxylate.
To the toluene (10 ml) solution of ethyl 2,4-dioxovalerate (6.6 $\mathrm{mmol}, 1.05 \mathrm{~g}$), phenylhydrazine ($11 \mathrm{mmol}, 1.2 \mathrm{~g}$) in toluene (2 ml) was added drop by drop under refluxing. After continuous refluxing for 3.5 h , the reaction mixture was washed with dilute hydrochloric acid, aqueous sodium hydrogencarbonate and brine. The organic layer was dried over anhydrous magnesium sulfate, and concentrated to give the crude product. By silica gel column chromatography with hexane-ethyl acetate ($3: 1 \mathrm{v} / \mathrm{v}$) mixture as eluent, ethyl 5-methyl-1-phenylpyrazole-3-carboxylate was obtained in 74% yield; ${ }^{1} \mathrm{H}$ nmr: $\delta 1.40(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 2.33$ $(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz})$, 7.41-7.49 (5H, m).

5-Methyl-1-phenylpyrazole-3-carboxylic Acid.

The mixture of ethyl 5-methyl-1-phenylpyrazole-2-carboxylate ($4.8 \mathrm{mmol}, 1.1 \mathrm{~g}$), sodium hydroxide (1.2 g), ethanol (3 ml) and water (27 ml) was heated for 2.5 h at 90°. After acidified with dilute hydrochloric acid, the reaction mixture was extracted with ether. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and concentrated. By recrystallization of the residue, 5-methyl-1-phenylpyrazole-3-carboxylic acid was obtained in 79% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.35(3 \mathrm{H}, \mathrm{d}, J=0.7$ $\mathrm{Hz}), 6.59(1 \mathrm{H}$, broad s), $6.80(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 7.41-7.53(5 \mathrm{H}$, m); ir (chloroform): v $3482,1688,1256 \mathrm{~cm}^{-1}$.

Preparation of 2-Furoyl Chloride (3c) and 5-Methyl-1-phenylpyrazole-3-carbonyl Chloride (3e).

2-Furoyl chloride (3c) and 5-methyl-1-phenylpyrazole-3-carbonyl chloride ($\mathbf{3 e}$) were prepared from the corresponding carboxylic acid by refluxing with excess amount of thionyl chloride. After removal of the excess thionyl chloride under reduced pres-
sure, the residue was directly used for the acylation of l-menthone without purification.

5-Methyl-1-Phenylpyrazole-3-carbonyl Chloride (3e).
The title compound was obtained; bp $150{ }^{\circ} / 10 \mathrm{~mm} \mathrm{Hg} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta 2.35(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 7.44-7.54$ $(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 12.4\left(\mathrm{CH}_{3}\right), 110.4(\mathrm{CH}), 125.3(\mathrm{CH}), 129.2$ (CH), 129.4 (CH), 138.7 (C), 141.9 (C), 145.9 (C), 162.3 (C); ir (chloroform): $v 1762,836 \mathrm{~cm}^{-1}$.
(3R,6S)-2-Heteroaroyl-3-methyl-6-isopropylcyclohexanone (4).
According to the previously reported method [5], l-menthone $(1.2 \mathrm{~g}, 7.9 \mathrm{mmol})$ in tetrahydrofuran $(2 \mathrm{ml})$ was added at -5° under argon atmosphere to a tetrahydrofuran (10 ml) solution of lithium diisopropylamide, which was prepared from diisopropylamine (1 ml) and butyllithium in hexane solution ($1.55 \mathrm{M}, 5 \mathrm{ml}$, 7.75 mmol). After stirring for 30 min , heteroaroyl chloride (3) $(8.5 \mathrm{mmol})$ in tetrahydrofuran (2 ml) was added at -5° and stirred for 5 h at room temperature. The reaction mixture was quenched with water, acidified with dilute hydrochloric acid and extracted with ether. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and the solvent was removed. The product (4) was purified by silica gel column chromatography with hexane-ethyl acetate mixture as eluent.
(3R,6S)-6-Isopropyl-3-methyl-2-(2-pyridinecarbonyl)cyclohexanone (4a).
Compound $\mathbf{4 a}$ was obtained in 37% yield; bp $130^{\circ} / 14 \mathrm{~mm} \mathrm{Hg}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.85(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.00$ $(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.23-1.46(2 \mathrm{H}, \mathrm{m}), 1.87-2.18(4 \mathrm{H}, \mathrm{m}), 2.31-$ $2.38(1 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.40-7.45(1 \mathrm{H}, \mathrm{m}), 7.79-$ $7.86(1 \mathrm{H}, \mathrm{m}), 8.06-8.10(1 \mathrm{H}, \mathrm{m}), 8.58-8.60(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta$ $18.5\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 35.7(\mathrm{CH}), 27.7\left(\mathrm{CH}_{2}\right), 35.3$ $(\mathrm{CH}), 50.7\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 64.0(\mathrm{CH}), 121.6(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 136.8(\mathrm{CH}), 148.5(\mathrm{CH}), 153.1(\mathrm{C}), 199.2(\mathrm{C}), 209.4(\mathrm{C})$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{C}, 74.10 ; \mathrm{H}, 8.16 ; \mathrm{N}, 5.4$. Found: C, 73.82; H, 8.07; N, 5.44.
(3R,6S)-2-(2-Furancarbonyl)-6-isopropyl-3-methylcyclohexanone (4c).
Compound 4c was obtained in 37% yield; mp 148-149 ${ }^{\circ}$ (hexane); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.85(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.46-1.59(2 \mathrm{H}, \mathrm{m}), 1.99-2.29(4 \mathrm{H}$, m), $2.45-2.55(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=3.6,1.7 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.6,0.7 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=1.7,0.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 18.5\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right)$, $27.5\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{CH}), 36.8(\mathrm{CH}), 26.6(\mathrm{CH}), 66.4(\mathrm{CH}), 112.5$ $(\mathrm{CH}), 116.8(\mathrm{CH}), 146.1(\mathrm{CH}), 153.7(\mathrm{C}), 186.8(\mathrm{C}), 208.2(\mathrm{C})$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.24; H, 8.06.
(3R,6S)-6-Isopropyl-3-methyl-2-(2-thiophenecarbonyl)cyclohexanone (4d).
Compound 4d was obtained in 35% yield; mp 139-140 (hexane); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.48-1.65(3 \mathrm{H}, \mathrm{m}), 2.00-2.26(3 \mathrm{H}, \mathrm{m})$, $2.50-2.55(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.0$, $4.0 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.6,1.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.0,1.3$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 18.5\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{CH}), 37.6(\mathrm{CH}), 56.8(\mathrm{CH}), 67.6(\mathrm{CH}), 128.1$ (CH), $131.8(\mathrm{CH}), 133.8(\mathrm{CH}), 145.3(\mathrm{C}), 190.1(\mathrm{C}), 208.1(\mathrm{C})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.14 ; \mathrm{H}, 7.63 ; \mathrm{S}, 12.13$. Found: C, 68.24; H, 7.57; S, 11.72.
(3R,6S)-6-Isopropyl-3-methyl-2-(5-methyl-1-phenylpyrazole-3carbonyl)cyclohexanone (4e).

Compound $\mathbf{4 e}$ was obtained in 66% yield; ${ }^{1} \mathrm{H} \mathrm{nmr:} \delta 0.84(3 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$, $1.40-1.60(1 \mathrm{H}, \mathrm{m}), 1.62(1 \mathrm{H}, \mathrm{s}), 1.96-2.15(2 \mathrm{H}, \mathrm{m}), 2.25-2.33$ $(1 \mathrm{H}, \mathrm{m}), 2.32(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 2.40-2.60(1 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{d}$, $J=12.9 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 7.40-7.54(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$: $\delta 12.4\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right)$, $28.0\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{CH}), 36.9(\mathrm{CH}), 56.5(\mathrm{CH}), 65.8(\mathrm{CH}), 107.0$ (CH), $125.2(\mathrm{CH}), 128.5(\mathrm{CH}), 129.2(\mathrm{CH}), 139.1(\mathrm{C}), 141.1(\mathrm{C})$, 151.9 (C), 193.8 (C), 209.2 (C).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.53; H, 7.74; $\mathrm{N}, 8.28$. Found: C, 74.20; H, 7.53; N, 8.14.
Preparation of 3-Heteroaryl- l-menthopyrazole (1).
The mixture of $4(2.0 \mathrm{mmol})$, hydrazine hydrate $(16 \mathrm{mmol}, 800$ mg) and hydrazine hydrochloride ($0.5 \mathrm{mmol}, 34 \mathrm{mg}$) in methanol $(15 \mathrm{ml})$ was refluxed for 7 h . The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with dilute hydrochloric acid and brine, and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was chromatographed on silica gel column with benzeneethyl acetate mixture as eluent.
3-(2-Pyridyl)-l-menthopyrazole (1a).
Compound 1a was obtained in 27% yield; $\mathrm{mp} 96-101^{\circ}$ (from Hexane); ${ }^{1} \mathrm{H}$ nmr: $\delta 0.89(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.06(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.37-1.48(1 \mathrm{H}, \mathrm{m}), 1.64-1.73(1 \mathrm{H}$, m), $1.82-1.93(1 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=12.8,6.3 \mathrm{~Hz}), 7.16-7.21(1 \mathrm{H}, \mathrm{m}), 7.65-7.76(2 \mathrm{H}, \mathrm{m}), 8.60-8.63$ $(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 19.0\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 21.4$ $\left(\mathrm{CH}_{3}\right), 26.8(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{CH}), 39.7(\mathrm{CH}), 120.0(\mathrm{C})$, $121.1(\mathrm{CH}), 122.0(\mathrm{CH}), 136.4(\mathrm{CH}), 149.3(\mathrm{CH}), 151.1(\mathrm{C})$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \bullet 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.95 ; \mathrm{H}, 8.34 ; \mathrm{N}$, 16.17. Found: C, 73.70 H, 8.12; N, 16.03.

3-(2-Furyl)- l-menthopyrazole (1c).

Compound 1c was obtained in 100% yield; mp 129.5-130.5 ${ }^{\circ}$ $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}$ nmr: $\delta 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.36-1.46(1 \mathrm{H}, \mathrm{m}), 1.60-1.71$ $(1 \mathrm{H}, \mathrm{m}), 1.79-1.91(1 \mathrm{H}, \mathrm{m}), 1.95-2.10(2 \mathrm{H}, \mathrm{m}), 2.54-2.62(1 \mathrm{H}$, m), 3.02-3.10 ($1 \mathrm{H}, \mathrm{m}$), $6.47(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.3,2.0 \mathrm{~Hz}$), $6.57(1 \mathrm{H}, \mathrm{d}-$ d, $J=3.3,0.7 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=2.0,0.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 19.2$ $\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 29.9$ $(\mathrm{CH}), 30.9(\mathrm{CH}), 39.0(\mathrm{CH}), 106.7(\mathrm{CH}), 111.2(\mathrm{CH}), 113.7(\mathrm{C})$, 128.2 (C), 141.5 (CH).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.74 ; \mathrm{H}, 8.25 ; \mathrm{N}, 11.47$. Found: C, 73.77; H, 8.03; N, 11.55.

3-(2-Thienyl)-l-menthopyrazole (1d).

Compound 1d was obtained in 80% yield; mp 118-119 ${ }^{\circ}$ (sublimation); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.85(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 1.13(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.38-1.46(1 \mathrm{H}, \mathrm{m}), 1.62-1.71(1 \mathrm{H}$, m), 1.80-1.86 ($1 \mathrm{H}, \mathrm{m}$), 1.95-2.08 $(2 \mathrm{H}, \mathrm{m}), 2.52-2.60(1 \mathrm{H}, \mathrm{m})$, 3.05-3.13 ($1 \mathrm{H}, \mathrm{m}$), $7.06(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=4.9,4.0 \mathrm{~Hz}$), 7.24-7.27 (2 H , m); ${ }^{13} \mathrm{C}$ nmr: $\delta 19.2\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $29.8(\mathrm{CH}), 30.8(\mathrm{CH}), 38.8(\mathrm{CH}), 118.5(\mathrm{C}), 124.3(\mathrm{CH}), 124.6$ (CH), $127.2(\mathrm{CH}), 136.5(\mathrm{C})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 69.19 ; \mathrm{H}, 7.74 ; \mathrm{N}, 10.76 ; \mathrm{S}$, 12.31. Found: C, 68.50; H, 7.76; N, 10.68; S, 11.21.

3-(5-Methyl-1-phenylpyrazol-3-yl)-l-menthopyrazole (1e).

Compound $\mathbf{1 e}$ was obtained in 51% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.87$ (3 H , d, $J=6.9 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $1.37-1.43(1 \mathrm{H}, \mathrm{m}), 1.62-1.71(1 \mathrm{H}, \mathrm{m}), 1.84-1.88(1 \mathrm{H}, \mathrm{m}), 1.98-$ $2.07(1 \mathrm{H}, \mathrm{m}), 2.11-2.17(1 \mathrm{H}, \mathrm{m}), 2.38(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 2.58-$ $2.64(1 \mathrm{H}, \mathrm{m}), 3.11-3.17(1 \mathrm{H}$, sex, $J=6.3 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{s}), 7.44-$ $7.53(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 12.5\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$, $21.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{C}), 30.7(\mathrm{CH}), 39.6(\mathrm{CH}), 105.6$ $(\mathrm{CH}), 119.3(\mathrm{C}), 124.8(\mathrm{CH}), 127.5(\mathrm{C}), 128.3(\mathrm{C}), 129.0(\mathrm{CH})$, 139.6 (C).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4}$: C, 75.41; H, 7.84; N, 16.75. Found: C, 74.71; H, 7.63; N, 16.53.

Preparation of 3-Heteroaryl-2-methyl-l-menthopyrazole (5).
The mixture of $\mathbf{4}(1.0 \mathrm{mmol})$, methylhydrazine ($6.8 \mathrm{mmol}, 313$ $\mathrm{mg})$ and hydrochloric acid ($6 \mathrm{M}, 60 \mathrm{mg}$) in methanol (7 ml) was refluxed for 7 h . The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with dilute hydrochloric acid, aqueous sodium hydrogencarbonate and brine. It was dried over anhydrous magnesium sulfate, and the solvent was removed to obtain the product mixture. From the nmr spectrum of the mixture, the regioisomer ratio was estimated, summarized in Table 1. The product mixture was chromatographed on silica gel column with benzene-ethyl acetate mixture as eluent.

2-Methyl-3-(2-pyridyl)-l-menthopyrazole (5a).

Compound 5a was obtained in 65% yield; bp $80^{\circ} / 14 \mathrm{~mm} \mathrm{Hg}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.79(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.07$ ($3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$), 1.23-1.28 ($1 \mathrm{H}, \mathrm{m}$), 1.52-1.56 ($1 \mathrm{H}, \mathrm{m}$), 1.82$1.86(1 \mathrm{H}, \mathrm{m}), 1.99-2.01(1 \mathrm{H}, \mathrm{m}), 2.40-2.47(1 \mathrm{H}, \mathrm{m}), 2.61-2.69$ $(1 \mathrm{H}, \mathrm{m}), 2.94-2.97(1 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 7.24-7.29(1 \mathrm{H}, \mathrm{m}), 7.45$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.73-7.79(1 \mathrm{H}, \mathrm{m}), 8.73(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3}$: C, $75.80 ; \mathrm{H}, 8.61 ; \mathrm{N}, 15.6$. Found: C, 75.39; H, 8.23; N, 15.34.

3-(2-Furyl)-2-methyl-l-menthopyrazole (5c).

Compound $\mathbf{5 c}$ was obtained in 78% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.85(3 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $1.25-1.36(1 \mathrm{H}, \mathrm{m}), 1.52-1.58(1 \mathrm{H}, \mathrm{m}), 1.81-1.87(1 \mathrm{H}, \mathrm{m}), 1.92-$ $2.00(1 \mathrm{H}, \mathrm{m}), 2.29-2.37(1 \mathrm{H}, \mathrm{m}), 2.58-2.64(1 \mathrm{H}, \mathrm{m}), 2.86-2.92$ $(1 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 6.46(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.3,0.7 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}-$ d, $J=3.3,1.7 \mathrm{~Hz}$), $7.53(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=2.0,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 18.2$ $\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 30.2$ $(\mathrm{CH}), 31.5(\mathrm{CH}), 37.7(\mathrm{CH}), 40.3\left(\mathrm{CH}_{3}\right), 110.0(\mathrm{CH}), 111.1(\mathrm{CH})$, 122.0 (C), 129.9 (C), 142.4 (CH), 144.9 (C), 150.7 (C).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.38 ; \mathrm{H}, 8.58$; N, 10.84.?Found: C, 73.89 ; H, $8.51 ;$ N, 10.25.

2-Methyl-3-(2-thienyl)- l-menthopyrazole ($\mathbf{5 d}$).

Compound 5d was obtained in 82% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.86$ (3H, d, $J=6.6 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $1.23-1.33(1 \mathrm{H}, \mathrm{m}), 1.50-1.55(1 \mathrm{H}, \mathrm{m}), 1.81-1.98(2 \mathrm{H}, \mathrm{m}), 2.34-$ $2.42(1 \mathrm{H}, \mathrm{m}), 2.59-2.67(1 \mathrm{H}, \mathrm{m}), 2.80-2.87(1 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s})$, 7.04 ($1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.6,1.3 \mathrm{~Hz}$), 7.12 ($1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.3,3.6 \mathrm{~Hz}$), 7.45 $(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.0,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$: $\delta 18.0\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.8$ $\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 30.0(\mathrm{CH}), 32.1(\mathrm{CH}), 36.8(\mathrm{CH})$, $40.6\left(\mathrm{CH}_{3}\right), 122.1(\mathrm{C}), 127.1(\mathrm{CH}), 127.2(\mathrm{CH}), 128.5(\mathrm{CH})$, 131.8 (C), 132.2 (C), 150.7 (C).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 70.03 ; \mathrm{H}, 8.08 ; \mathrm{N}, 10.21$; S, 11.68. Found: C, $69.90 ;$ H, 8.12 ; N, 10.09; S, 11.06.

2-Methyl-3-(5-methyl-1-phenylpyrazol-3-yl)-l-menthopyrazole (5e).
Compound $\mathbf{5 e}$ was obtained in 36% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.84(3 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}), 1.03(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$, 1.49-1.59 ($1 \mathrm{H}, \mathrm{m}$), 1.67-1.87 ($2 \mathrm{H}, \mathrm{m}$), 1.95-2.01 ($1 \mathrm{H}, \mathrm{m}$), 2.32$2.40(1 \mathrm{H}, \mathrm{m}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.59-2.65(1 \mathrm{H}, \mathrm{m}), 2.96-3.00(1 \mathrm{H}, \mathrm{m})$, $3.93(3 \mathrm{H}, \mathrm{s}), 6.33(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 7.35-7.51(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$: $\delta 12.6\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 30.2(\mathrm{CH}), 31.8(\mathrm{CH}), 37.8(\mathrm{CH}), 40.4(\mathrm{C}), 107.9$ $(\mathrm{CH}), 121.4(\mathrm{C}), 124.5(\mathrm{C}), 124.7(\mathrm{CH}), 127.7(\mathrm{C}), 129.1(\mathrm{CH})$, 139.3 (C), 139.7 (C), 143.3 (C), 150.5 (C).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4}$: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.58; H, 7.56; N, 16.26.

Preparation of 3-Heteroaryl-1-methyl-l-menthopyrazole (6).
Butyllithium in hexane solution ($1.55 M, 0.56 \mathrm{ml}, 0.87 \mathrm{mmol}$) was added to a tetrahydrofuran solution of $\mathbf{1}(0.8 \mathrm{mmol})$ at -5° and kept for 30 min with stirring under argon atmosphere. To the reaction mixture was added methyl iodide ($6.7 \mathrm{mmol}, 958 \mathrm{mg}$) in tetrahydrofuran $(1 \mathrm{ml})$ at -5°, and then stirred for 6 h at room temperature. The reaction mixture was quenched with water, acidified with dilute hydrochloric acid, and extracted with ether. The organic layer was washed with dilute hydrochloric acid, aqueous sodium hydrogencarbonate and brine. It was dried over anhydrous magnesium sulfate, and the solvent was removed to obtain the product mixture. From the nmr spectrum of the mixture, the regioisomer ratio was estimated, summarized in Table 1. The product mixture was chromatographed on silica gel column with benzene-ethyl acetate mixture as eluent to obtained 6 .

1-Methyl-3-(2-pyridyl)- l-menthopyrazole ($\mathbf{6 a}$).

Compound $\mathbf{6 a}$ was obtained in 67% yield; $80 \% 14 \mathrm{~mm} \mathrm{Hg} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta 0.84(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.19(3 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}), 1.57-1.88(4 \mathrm{H}, \mathrm{m}), 2.26-2.33(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{q}$, $J=6.3 \mathrm{~Hz}), 3.40-3.46(1 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 7.10-7.15(1 \mathrm{H}, \mathrm{m})$, 7.63-7.69 ($1 \mathrm{H}, \mathrm{m}$), 7.80-7.84 ($1 \mathrm{H}, \mathrm{m}$), 8.60-8.63 ($1 \mathrm{H}, \mathrm{m}$), ${ }^{13} \mathrm{C}$ nmr: $\delta 17.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 26.4$ $(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 29.8(\mathrm{CH}), 37.8\left(\mathrm{CH}_{3}\right), 38.1(\mathrm{CH}), 121.0$ $(\mathrm{CH}), 121.3(\mathrm{CH}), 121.8(\mathrm{C}), 135.9(\mathrm{CH}), 142.6(\mathrm{C}), 146.3(\mathrm{C})$, $149.0(\mathrm{CH}), 154.1(\mathrm{C})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3}$: C, 75.8; H, 8.61; N, 15.6. Found: C, 75.30; H, 8.58; N,15.23.

3-(2-Furyl)-1-methyl-l-menthopyrazole ($\mathbf{6 c}$).

Compound $\mathbf{6 c}$ was obtained in 76% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.90(3 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, 1.43-1.52 ($1 \mathrm{H}, \mathrm{m}$), 1.76-1.91 ($2 \mathrm{H}, \mathrm{m}$), 1.93-2.08 ($2 \mathrm{H}, \mathrm{m}$), 2.53$2.59(1 \mathrm{H}, \mathrm{m}), 3.10-3.17(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 6.46(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=3.3,2.0 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=3.3,0.7 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=2.0,0.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 19.8\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 27.0(\mathrm{CH}), 31.5(\mathrm{CH}), 37.0(\mathrm{CH}), 37.0$ $\left(\mathrm{CH}_{3}\right), 105.8(\mathrm{CH}), 110.9(\mathrm{CH}), 119.0(\mathrm{C}), 139.5(\mathrm{C}), 141.1$ (CH), 141.7 (C), 149.3 (C).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.38 ; \mathrm{H}, 8.58 ; \mathrm{N}, 10.84$. Found: C, 73.85; H, 8.43; N, 10.54.

1-Methyl-3-(2-thienyl)- l-menthopyrazole ($\mathbf{6 d}$).
Compound $\mathbf{6 d}$ was obtained in 61% yield; ${ }^{1} \mathrm{H}$ nmr: $\delta 0.91(3 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$,
$1.45-1.52(1 \mathrm{H}, \mathrm{m}), 1.76-1.87(2 \mathrm{H}, \mathrm{m}), 1.97-2.08(2 \mathrm{H}, \mathrm{m}), 2.52-$ $2.58(1 \mathrm{H}, \mathrm{m}), 3.15-3.21(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=5.3,3.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.3,1.0 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{d}-\mathrm{d}$, $J=3.6,1.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 19.8\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{2}\right)$, $25.5\left(\mathrm{CH}_{2}\right), 27.0(\mathrm{CH}), 31.5(\mathrm{CH}), 37.0(\mathrm{CH}), 37.1$ $\left(\mathrm{CH}_{3}\right), 118.8(\mathrm{C}), 123.4(\mathrm{CH}), 123.6(\mathrm{CH}), 127.2(\mathrm{CH}), 137.3$ (C), 142.1 (C), 142.3 (C).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 70.03 ; \mathrm{H}, 8.08 ; \mathrm{N}, 10.21 ; \mathrm{S}$, 11.68. Found: C, $70.23 ; \mathrm{H}, 7.97 ; \mathrm{N}, 10.21 ;$ S, 11.82 .

1-Methyl-3-(5-methyl-1-phenylpyrazol-3-yl)-l-menthopyrazole (6e).

Compound 6e was obtained in 87% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.89(3 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, 1.43-1.49 (1H, m), 1.78-1.86 (2H, m), 1.96-2.09 ($2 \mathrm{H}, \mathrm{m}$), 2.39 $(3 \mathrm{H}, \mathrm{s}), 2.54-2.60(1 \mathrm{H}, \mathrm{m}), 3.30-3.35(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.57$ $(1 \mathrm{H}, \mathrm{s}), 7.31-7.55(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{nmr}$: $\delta 12.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$, $20.2\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 27.4(\mathrm{CH}), 31.5(\mathrm{CH}), 37.0$ $(\mathrm{CH}), 37.3\left(\mathrm{CH}_{3}\right), 105.5(\mathrm{CH}), 120.0(\mathrm{C}), 124.6(\mathrm{CH}), 127.0$ (CH), 128.8 (CH), 139.0 (C), 140.3 (C), 141.7 (C), 141.8 (C), 147.1 (C).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4}$: C, 75.82; H, 8.1; N, 16.08. Found: C, 75.29; H, 7.81; N, 15.59.
Reaction of Phthaloyl Chlorides with l-Menthone.
According to the previously reported method [5], l-menthone $(620 \mathrm{mg}, 4.0 \mathrm{mmol})$ in tetrahydrofuran $(2 \mathrm{ml})$ was added at -5° under argon atmosphere to a tetrahydrofuran $(5 \mathrm{ml})$ solution of lithium diisopropylamide, which was prepared from diisopropylamine (0.6 ml) and butyllithium in hexane solution ($1.55 \mathrm{M}, 2.6$ $\mathrm{ml}, 4.0 \mathrm{mmol}$). After stirring for 30 min , isophthaloyl, terephthaloyl or phthaloyl chloride ($406 \mathrm{mg}, 2.0 \mathrm{mmol}$) in tetrahydrofuran (2 ml) was added at -5° and stirred for 3 h at room temperature. The reaction mixture was quenched with water, acidified with dilute hydrochloric acid and extracted with ether. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and the solvent was removed. The product ($\mathbf{7 b}$ or $7 \mathrm{c})$ was roughly purified by silica gel column chromatography with hexane-ethyl acetate mixture as eluent, and was provided to the preparation of $\mathbf{2}$ and $\mathbf{8}$. In the case of phthaloyl chloride, tetraketone 7 could not be obtained and di[(3S, $6 R)$ - 6 -isopropyl-3-methyl]cyclohex-1-enyl phthalate (10) was isolated by recrylstallization from methanol.

1,3-Bis-[(3S,6R)-3-isopropyl-6-methyl-2-oxocyclohexanecarbonyl]benzene (7b).
Compound 7b was obtained in 41% yield; 105-107 ${ }^{\circ}$ (methanol) ${ }^{1} \mathrm{H}$ nmr: $\delta 0.87(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.50-1.66(3 \mathrm{H}, \mathrm{m}), 2.04-2.20(2 \mathrm{H}$, m), 2.25-2.33 ($1 \mathrm{H}, \mathrm{m}$), 2.51-2.57 ($1 \mathrm{H}, \mathrm{m}$), $4.04(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}), 7.55(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.99(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.27(1 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ nmr: $\delta 18.5\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{CH}), 27.8$ $\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{CH}), 57.0(\mathrm{CH}), 66.3(\mathrm{CH}), 127.5$ (CH), 129.1 (CH), 132.2 (CH), 138.3 (C), 197.6 (C), 208.8 (C).
Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4}$: C, 76.68; H, 8.73. Found: C, 76.32; H, 8.27.

1,4-Bis-[(3S,6R)-3-isopropyl-6-methyl-2-oxocyclohexanecarbonyl]benzene (7c).
Compound 7c was obtained in 44% yield; mp 172-173 ${ }^{\circ}$ (methanol); ${ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 0.83(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{d}, J=6.6$
$\mathrm{Hz}), 0.86$ ($3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), 0.92 ($3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$), 0.98 ($3 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.41-2.00(6 \mathrm{H}, \mathrm{m}), 2.03-2.34$ $(6 \mathrm{H}, \mathrm{m}), 2.53-2.60(2 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}$, $J=4.6 \mathrm{~Hz}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.06(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 18.5\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.2$ $\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 29.1(\mathrm{CH}), 33.4$ $(\mathrm{CH}), 37.4(\mathrm{CH}), 39.5(\mathrm{CH}), 53.1(\mathrm{CH}), 57.0(\mathrm{CH}), 66.1(\mathrm{CH})$, $66.5(\mathrm{CH}), 128.2(\mathrm{CH}), 128.9(\mathrm{CH}), 141.1$ (C), 196.2 (C), 197.9 (C), 208.3 (C), 209.2 (C).

Di[(3S,6R)-6-isopropyl-3-methyl]cyclohex-1-enyl Phthalate (10).

Compound 10 was obtained in 56% yield; mp 106-107 ${ }^{\circ}$ (methanol); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.81$ ($6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$), $0.90(6 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 1.04(6 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.16-1.30(2 \mathrm{H}, \mathrm{m}), 1.35-1.49(2 \mathrm{H}$, m), 1.74-1.85 ($4 \mathrm{H}, \mathrm{m}$), 1.95-2.05 ($2 \mathrm{H}, \mathrm{m}$), 2.28-2.34 ($2 \mathrm{H}, \mathrm{m}$), 2.58-2.64 ($2 \mathrm{H}, \mathrm{m}$), $5.49(2 \mathrm{H}, \mathrm{s}), 7.56(2 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=5.9,3.3 \mathrm{~Hz})$, 7.78 (2H, d-d, $J=5.6,3.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 16.8\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 30.2(\mathrm{CH}), 30.7(\mathrm{CH}), 41.7$ (CH), $122.4(\mathrm{CH}), 129.1(\mathrm{CH}), 131.1(\mathrm{CH}), 132.1(\mathrm{C}), 150.3(\mathrm{C})$, 165.4 (C); ir (chloroform): v $3019,1735,1286,1271 \mathrm{~cm}^{-1}$.

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{4}$: C, 76.68; H, 8.73. Found: C, 75.92; H, 8.69.

2,6-Bis[(3S,6R)-3-isopropyl-6-methyl-2-oxocyclohexanecarbonyllpyridine (7a).

According to the previously reported method [5], l-menthone ($620 \mathrm{mg}, 4.0 \mathrm{mmol}$) in tetrahydrofuran (2 ml) was added at -5° under argon atmosphere to the tetrahydrofuran (5 ml) solution of lithium diisopropylamide, which was prepared from diisopropylamine (0.6 ml) and butyllithium in hexane solution ($1.55 \mathrm{M}, 2.6$ $\mathrm{ml}, 4.0 \mathrm{mmol}$). After stirring for 30 min , powder of pyridine-2,6-dicarbonyl chloride hydrochloride ($480 \mathrm{mg}, 2.0 \mathrm{mmol}$) was directly added at -5° and stirred for 3 h at room temperature. The reaction mixture was quenched with water, acidified with dilute hydrochloric acid and extracted with ether. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and the solvent was removed. The product (7a) was purified by silica gel column chromatography with hexane-ethyl acetate ($7: 1 \mathrm{v} / \mathrm{v}$) mixture in 55% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.92(6 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 0.95(6 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.99(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.47-$ $1.64(4 \mathrm{H}, \mathrm{m}), 2.02-2.14(4 \mathrm{H}, \mathrm{m}), 2.19-2.36(4 \mathrm{H}, \mathrm{m}), 2.48-2.54$ $(2 \mathrm{H}, \mathrm{m}), 4.58(2 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}), 8.25$ $(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 19.0\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 21.9$ $\left(\mathrm{CH}_{3}\right), 27.1(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH}), 57.8$ (CH), 64.3 (CH), $125.0(\mathrm{CH}), 138.2(\mathrm{CH}), 152.1(\mathrm{C}), 197.6(\mathrm{C})$, 209.3 (C).

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}$: C, 73.77 ; H, 8.48; N, 3.19. Found: C, 73.86; H, 8.50; N, 3.08.
2,6-Bis(l-menthopyrazol-3-yl)pyridine (2a) and 1,3-Bis(l-men-thopyrazol-3-yl)benzene (2b).

The mixture of $7(14.0 \mathrm{mmol})$, hydrazine hydrate $(160 \mathrm{mmol}$, 8.0 g) and hydrazine hydrochloride ($8.2 \mathrm{mmol}, 562 \mathrm{mg}$) in methanol (20 ml) was refluxed for 19 h . The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with dilute hydrochloric acid and brine, dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was chromatographed on silica gel column with ben-zene-ethyl acetate mixture or recrystallized from aqueous methanol.

2,6-Bis(l-menthopyrazol-3-yl)pyridine (2a).

Compound 2a was obtained in 62% yield; mp $124-134^{\circ}$; ${ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta 0.92(6 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.06(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.45-1.50$ $(1 \mathrm{H}, \mathrm{m}), 1.69-1.76(1 \mathrm{H}, \mathrm{m}), 1.86-1.96(1 \mathrm{H}, \mathrm{m}), 2.03-2.18(2 \mathrm{H}$, $\mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=12.2,5.6 \mathrm{~Hz}), 7.59$ $(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}-\mathrm{d}, J=8.6,7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 19.2$ $\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right), 26.8(\mathrm{CH}), 29.7\left(\mathrm{CH}_{2}\right), 30.9$ $(\mathrm{CH}), 39.5(\mathrm{CH}), 118.9(\mathrm{CH}), 120.0(\mathrm{C}), 136.9(\mathrm{CH}), 141.1(\mathrm{C})$, 149.3 (C), 150.2 (C).

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{5}$: C, 75.13; H, 8.64; N, 16.23. Found: C, 75.78; H, 8.55; N, 15.43

1,3-Bis(l-menthopyrazol-3-yl)benzene (2b).

Compound 2b was obtained in 39% yield; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.84$ (3H, d, $J=6.6 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.25$ ($2 \mathrm{H}, \mathrm{m}, 1.54(2 \mathrm{H}, \mathrm{m}), 1.79(2 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{m})$, $2.62(2 \mathrm{H}, \mathrm{m}), 2.99(2 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{d}$ $J=7.6 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 18.2\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.8$ $\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{2}\right), 26.9(\mathrm{CH}), 30.0(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{CH})$, 118.4 (C), 126.7 (CH), 128.1 (CH), 133.5 (CH), 144.8 (C), 146.8 (C).

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4}$: C, 78.09; H, 8.89; N, 13.01. Found: C, 78.31; H, 9.22; N, 12.82.
$1,4-\operatorname{Bis}(l-m e n t h o p y r a z o l-3-y l) b e n z e n e ~(2 c) . ~$
Compound 2c was obtained in 54% yield; mp 268-269 ${ }^{\circ}$ (methanol); ${ }^{1} \mathrm{H}$ nmr: $\delta 0.89$ ($6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$), 1.01 ($6 \mathrm{H}, \mathrm{d}, J=6.7$ $\mathrm{Hz}), 1.06(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.25-1.36(2 \mathrm{H}, \mathrm{m}), 1.56-1.62(2 \mathrm{H}$, m), 1.83-1.89 ($2 \mathrm{H}, \mathrm{m}$), 2.02-2.08 ($2 \mathrm{H}, \mathrm{m}$), 2.17-2.24 ($2 \mathrm{H}, \mathrm{m}$), 2.64-2.68 ($2 \mathrm{H}, \mathrm{m}$), 3.07-3.11 $(2 \mathrm{H}, \mathrm{m}), 7.61(4 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta$ $18.6\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right)$, $30.4(\mathrm{CH}), 31.7(\mathrm{CH}), 39.9(\mathrm{CH}), 118.9(\mathrm{C}), 127.5(\mathrm{CH})$.
Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4}: \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4} \cdot \mathrm{CH}_{3} \mathrm{OH}$: C, $75.28 ; \mathrm{H}$, 9.15; N, 12.11. Found: C, 75.46; H, 8.96; N, 12.50.

2,6-Bis(2-methyl-l-menthopyrazol-3-yl)pyridine (8a) and 1,3-Bis(2-methyl-l-menthopyrazol-3-yl)benzene ($\mathbf{8 b}$).

The mixture of $\mathbf{7}(2.3 \mathrm{mmol})$, methylhydrazine $(9.6 \mathrm{mmol}, 440$ mg) and p-toluenesulfonic acid ($2.0 \mathrm{mmol}, 387 \mathrm{mg}$) in methanol $(50 \mathrm{ml})$ was refluxed for 9 h . The reaction mixture was diluted with water and extracted with toluene. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and concentrated. The product mixture was chromatographed on silica gel column with benzene-ethyl acetate mixture as eluent.

2,6-Bis(2-methyl-l-menthopyrazol-3-yl)pyridine (8a).

Compound 8a was obtained in 25% yield; $\mathrm{mp} 68-71^{\circ} ;{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.85(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.87(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.08(6 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 1.25-1.30(2 \mathrm{H}, \mathrm{m}), 1.53-1.57(2 \mathrm{H}, \mathrm{m}), 1.83-1.88(2 \mathrm{H}$, m), 1.98-2.03 ($2 \mathrm{H}, \mathrm{m}$), 2.38-2.45 ($2 \mathrm{H}, \mathrm{m}$), 2.61-2.67 ($2 \mathrm{H}, \mathrm{m}$), 2.96-2.99 ($2 \mathrm{H}, \mathrm{m}$), $3.86(6 \mathrm{H}, \mathrm{s}), 7.40(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.81(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 28.0\left(\mathrm{CH}_{3}\right)$, $20.8\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right)$, $22.4\left(\mathrm{CH}_{2}\right), 27.4(\mathrm{CH}), 29.9(\mathrm{CH}), 32.2\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{3}\right), 40.7$ $(\mathrm{CH}), 121.3(\mathrm{C}), 123.3(\mathrm{CH}), 136.3(\mathrm{CH}), 137.7(\mathrm{C}), 150.5(\mathrm{C})$, 151.0 (C).

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{5}$: C, 75.77; H, 8.99; N, 15.24 . Found: C, 75.37; H, 8.59; N, 14.85.
1,3-Bis(2-methyl-l-menthopyrazol-3-yl)benzene ($\mathbf{8 b}$).
Compound $\mathbf{8 b}$ was obtained in 7% yield; mp 202-203 ${ }^{\circ}$ (ben-zene-hexane); ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 0.75(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.87(6 \mathrm{H}, \mathrm{d}$,
$J=6.9 \mathrm{~Hz}), 1.08(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.20-30(2 \mathrm{H}, \mathrm{q}, J=12.5 \mathrm{~Hz})$, $1.44-58(2 \mathrm{H}, \mathrm{q}, J=12.2 \mathrm{~Hz}), 1.82-98(4 \mathrm{H}, \mathrm{m}), 2.40-46(2 \mathrm{H}, \mathrm{m})$, 2.62-67 (2H, m), 2.76-86 ($2 \mathrm{H}, \mathrm{m}$), $3.70(6 \mathrm{H}, \mathrm{s}), 7.29-37(3 \mathrm{H}, \mathrm{m})$, $7.49(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 17.9\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 22.7$ $\left(\mathrm{CH}_{2}\right), 27.4(\mathrm{CH}), 29.9(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{3}\right), 40.9(\mathrm{CH})$, $120.6(\mathrm{C}), 128.6(\mathrm{CH}), 129.5(\mathrm{CH}), 130.8(\mathrm{CH}), 132.5(\mathrm{C}), 138.8$ (C), 150.9 (C).

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4}$: C, 78.56; H, 9.23; N, 12.21. Found: C, 78.56; H, 9.26; N, 11.81.

2,6-Bis(1-methyl-l-menthopyrazol-3-yl)pyridine (9a) and 1,3-$\operatorname{Bis}(1-m e t h y l-l$-menthopyrazol-3-yl)benzene (9b).

Under argon atmosphere, butyllithium in hexane solution (1.55 $M, 1.28 \mathrm{ml}, 2.0 \mathrm{mmol}$) was added to the tetrahydrofuran (5 ml) solution of $2(1.1 \mathrm{mmol})$ at -5° and kept for 30 min with stirring. To the reaction mixture was added methyl iodide ($2.2 \mathrm{mmol}, 318$ mg) in tetrahydrofuran (3 ml) at -5°, and then stirred for 2 h at room temperature. The reaction mixture was quenched with water, acidified with dilute hydrochloric acid, and extracted with ether. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and concentrated. The product (9) was purified from the residual mixture by recrystallization or by silica gel column chromatography with benzene-ethyl acetate mixture as eluent.

2,6-Bis(1-methyl-l-menthopyrazol-3-yl)pyridine (9a).
Compound 9a was obtained in 81% yield; mp 260-270 ${ }^{\circ}$ (MeOH-AcOEt); ${ }^{1} \mathrm{H} \mathrm{nmr:} \delta 0.92(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.04(6 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 1.04(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.40-1.47(2 \mathrm{H}, \mathrm{m}), 1.77-1.85$ $(4 \mathrm{H}, \mathrm{m}), 1.99-2.15(4 \mathrm{H}, \mathrm{m}), 2.57-2.62(2 \mathrm{H}, \mathrm{m}), 3.52-3.58(2 \mathrm{H}$, $\mathrm{m}), 3.83(6 \mathrm{H}, \mathrm{s}), 7.66(1 \mathrm{H}, \mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}), 7.81(2 \mathrm{H}, \mathrm{d}, J=7.3$ $\mathrm{Hz})$; ${ }^{13} \mathrm{C}$ nmr: $\delta 19.7\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$, $25.8(\mathrm{CH}), 27.7\left(\mathrm{CH}_{2}\right), 31.4(\mathrm{CH}), 37.3\left(\mathrm{CH}_{3}\right), 37.5(\mathrm{CH}), 119.1$ (CH), 121.3 (C), 136.1 (CH), 142.1 (C), 147.4 (C), 153.4 (C).

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{5}$: C, $75.77 ; \mathrm{H}, 8.99 ; \mathrm{N}, 15.24$. Found: C, 75.71; H, 8.57; N, 15.07.

1,3-Bis(1-methyl-l-menthopyrazol-3-yl)benzene (9b).

Compound 9b was obtained in 7\% yield; mp 217-219 ${ }^{\circ}$ (methanol); ${ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 0.93(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.3$ $\mathrm{Hz}), 1.02(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.36-1.42(1 \mathrm{H}, \mathrm{m}), 1.74-1.81(2 \mathrm{H}$, m), 2.01-2.16 ($2 \mathrm{H}, \mathrm{m}$), $2.57(1 \mathrm{H}, \mathrm{dd}, J=5.6,4.3 \mathrm{~Hz}), 3.21-3.26$ $(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}), 8.02(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 19.6\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 21.4$ $\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{CH}), 27.9\left(\mathrm{CH}_{2}\right), 31.1(\mathrm{CH}), 37.1$ $\left(\mathrm{CH}_{3}\right), 37.7(\mathrm{CH}), 119.1(\mathrm{C}), 126.0(\mathrm{CH}), 128.3(\mathrm{CH}), 135.1(\mathrm{C})$, 142.0 (C), 147.8 (C).

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4}$: C, 78.56; H, 9.23; N, 12.21 . Found: C, 78.16; H, 8.82; N, 11.98.
Diels Alder Reaction of 3,5-Disubstituted-1-acryloylpyrazole (11) with Cyclopentadiene (12).

Under argon atmosphere, the mixture of 3-heteroaryl-l-menthopyrazole ligand $(\mathbf{1}, \mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{8}$, or $\mathbf{9})(0.03 \mathrm{mmol})$, Lewis acid $(0.025 \mathrm{mmol})$ and Molecular Sieves $4 \AA(c a .100 \mathrm{mg})$ in dichloromethane (0.5 ml) was stirred for 30 min at 0°. In some cases, 0.03 mmol of Lewis acid was used toward the ligand (2, 8, or 9$)(0.015 \mathrm{mmol})$. 3,5-Disubstituted-1-acryloylpyrazole (11) $(0.25 \mathrm{mmol})$ in dichloromethane (1 ml) was added to the reaction mixture, and stirred for another 30 min at 0°. Cyclopentadiene (12) $(2.4 \mathrm{mmol}, 0.2 \mathrm{ml})$ was added and the mixture was kept stir-
ring for 5 h at 0°. The reaction mixture was washed with dilute hydrochloric acid, saturated sodium hydrogencarbonate, aqueous NaCl , dried over anhydrous magnesium sulfate, and concentrated. After addition of appropriate amount of phenanthrene as an internal standard, the reaction residue was injected to the gas chromatography to determine the product yields.

Further the reaction residue was dissolved in methanol solution of sodium methoxide, which was prepared from sodium (5 $\mathrm{mg})$ and methanol (1 ml). The subsequent methanol solution was stirred for 45 min at room temperature, diluted with water, and extracted with ether. After washing with dilute hydrochloric acid, the ether extract was directly injected to the chiral column gas chromatography to evaluate the endo-exo isomer ratio and the enantiomer ratio of endo-adduct (13). The results are summarized in Table 2 and Table 3.

Formation of 2a under Forced Conditions.
Under argon atmosphere, butyllithium in hexane solution (1.55 $M, 0.03 \mathrm{mmol}$) was added to the mixture of 2,6-bis(l-menthopy-razol-3-yl)pyridine (2a) (0.03 mmol), Lewis acid (0.025 mmol) and Molecular Sieves $4 \AA(c a .100 \mathrm{mg})$ in dichloromethane $(0.5$ ml), and stirred for 30 min at 0°. The reaction mixture was applied for the Diels Alder reaction catalyst described as above, and the results were summarized in Table 2 and Table 3.

Acknowledgements.

The authors are grateful to the Chemical Analysis Center, University of Tsukuba, for the measurement of various kinds of spectra, X-ray structural analyses and the elemental analyses.

REFERENCES AND NOTES

* E-Mail: Choji.kashima@nifty.ne.jp
[1] C. Kashima, Heterocycles, 60, 959 (2003).
[2] C. Kashima, I. Fukuchi, K. Takahashi, and A. Hosomi, Tetrahedron Lett., 34, 8305 (1993).
[3a] C. Kashima, Y. Miwa, S. Shibata, and H. Nakazono, J. Heterocyclic Chem., 39, 1235 (2002); [b] C. Kashima, Y. Miwa, T. Yokawa, and S. Shibata, Heterocycles, 59, 225 (2003).
[4a] For recent reviews, see: 'Asymmetric Synthesis', Vol. 1-5, ed. by D. J. Morrison, Academic Press Inc., New York, 1983-1985; [b] B. H. Kim and D. P. Curran, Tetrahedron, 49, 294 (1993); [c] L. Deloux and M. Srebnik, Chem. Rev., 93, 763 (1993); [d] T. G. Gant and A. I. Meyers, Tetrahedron, 50, 2297 (1994).
[5] C. Kashima, I. Fukuchi, and A. Hosomi, J. Org. Chem., 59,

7821 (1994).
[6] C. Kashima, K. Takahashi, and A. Hosomi, Heterocycles, 42, 241 (1996).
[7] C. Kashima, I. Fukuchi, K. Takahashi, and A. Hosomi, Tetrahedron, 52, 10335 (1996).
[8] C. Kashima, I. Fukuchi, K. Takahashi, K. Fukusaka, and A. Hosomi, Heterocycles, 47, 357 (1998).
[9] C. Kashima, K. Fukusaka, and K. Takahashi, J. Heterocyclic Chem., 34, 1559 (1997).
[10] C. Kashima, K. Takahashi, K. Fukusaka, and A. Hosomi, J. Heterocyclic Chem., 35, 503 (1998).
[11] C. Kashima, K. Fukusaka, K. Takahashi, and Y. Yokoyama, J. Org. Chem., 64, 1108 (1999).
[12] C. Kashima, K. Takahashi, I. Fukuchi, and K. Fukusaka, Heterocycles, 44, 289 (1997).
[13a] H. A. Staab, Angew. Chem., 74, 407 (1962); [b] T. Kamijo, H. Harada, and K. Iizuka, Chem. Pharm. Bull., 32, 5044 (1984); [c] T. Kitagawa, M. Kawaguchi, S. Inoue, and S. Katayama, Chem. Pharm. Bull., 39, 3030 (1991).
[14a] C. Kashima, H. Harada, I. Kita, I. Fukuchi, and A. Hosomi, Synthesis, 61 (1994); [b] C. Kashima, S. Mizuhara, Y. Miwa, and Y. Yokoyama, Tetrahedron Asymm., 13, 1713 (2002).
[15] C. Kashima, I. Fukuchi, K. Takahashi, and A. Hosomi, Heterocycles, 38, 1407 (1994).
[16] C. Kashima, I. Kita, K. Takahashi, and A. Hosomi, J. Heterocyclic Chem., 32, 25 (1995).
[17] C. Kashima, I. Kita, K. Takahashi, and A. Hosomi, J. Heterocyclic Chem., 32, 723 (1995).
[18] C. Kashima, Heterocycles, 60, 437 (2003).
[19a] D. A. Evans, K. A. Woerpel, M. M. Hinman, and M. M. Faul, J. Am. Chem. Soc., 113, 726 (1991); [b] D. A. Evans, S. J. Miller, T. Lectka, and P. von Matt, J. Am. Chem. Soc., 115, 6460 (1993); [c] D. A. Evans, S. J. Miller, T. Lectka, and P. von Matt, J. Am. Chem. Soc., 121, 7559 (1999); [d] D. A. Evans, D. M. Barnes, J. S. Johnson, T. Lectka, P. von Matt, S. J. Miller, J. A. Murry, R. D. Norcross, E. A.. Shaughuessy, and K. R. Campos, J. Am. Chem. Soc., 121, 7582 (1999).
[20] S. Kanemasa, Y. Oderaotoshi, S. Sakaguchi, H. Yamamoto, J. Tanaka, E. Wada, and D. P. Curran, J. Am. Chem. Soc., 120, 3074 (1998), and references therein.
[21] R. Mukherjee, Coord. Chem. Rev., 203151 (2000).
[22a] C. Kashima, Y. Tsukamoto, K. Higashide, and H. Nakazono, J. Heterocyclic Chem., 37, 983 (2000); [b] C. Kashima, Y. Tsukamoto, Y. Miwa, and K. Higashide, J. Heterocyclic Chem., 38, 601 (2001); [c] C. Kashima, K. Higashide, Y. Miwa, and Y. Tsukamoto, J. Heterocyclic Chem., 39, 917 (2002).
[23] C. Kashima, Y. Miwa, S. Shibata, and H. Nakazono, J. Heterocyclic Chem., in press.

[^0]: [a] 2,6-Disubstituted pyridine and 1,3-disubstituted benzene groups were abbreviated as Py and Ph , respectively.

